1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
//! Writes ascii or binary data from a `Ply` to a `Write` trait.

use std::marker::PhantomData;
use ply::PropertyAccess;

/// Writes a `Ply` to a `Write` trait.
///
/// The simplest function to start with is `write_ply()`.
/// It performs all necessary checks and writes a complete PLY file.
/// Sometimes you might want to have better control over how much is written.
/// All other `write_` functions are for those cases.
/// The trade-off is, that then you get responsible to write consistent data.
/// See `Ply::make_consistent()`.
///
/// For further information on the PLY file format,
/// consult the [official reference](http://paulbourke.net/dataformats/ply/).
///
/// # Examples
///
/// Simplest case of writing an entire PLY file en bloc:
///
/// ```rust
/// # use ply_rs::ply::{Ply, DefaultElement};
/// # use ply_rs::writer::Writer;
/// // Get a Ply from somewhere
/// // let mut ply = ...;
/// # let mut ply = Ply::<DefaultElement>::new();
///
/// // Get a buffer with `Write` trait.
/// // For example a file: let buf = std::io::File(".../your.ply").unwrap();
/// # let mut buf = Vec::<u8>::new();
///
/// // Create a writer
/// let w = Writer::new();
///
/// // Write your data:
/// let written = w.write_ply(&mut buf, &mut ply).unwrap();
/// ```
pub struct Writer<E: PropertyAccess> {
    /// Should be fairly efficient, se `as_bytes()` in https://doc.rust-lang.org/src/collections/string.rs.html#1001
    new_line: String,
    phantom: PhantomData<E>,
}

/*
use std::marker::PhantomData;
use writer::Writer;
use ply::PropertyAccess;
// */

use std::io;
use std::io::{ Write, Result, ErrorKind };

use ply::Ply;

// ////////////////////////////
// General
// /////////////
impl<E: PropertyAccess> Writer<E> {
    /// Create a new `Writer<E>` where `E` is the element type. To get started quickly use `DefaultElement`.
    pub fn new() -> Self {
        Writer {
            new_line: "\n".to_string(),
            phantom: PhantomData,
        }
    }
    // TODO: think about masking and valid/invalid symbols
    /// Writes an entire PLY file modeled by `ply` to `out`, performs consistency chekc.
    ///
    /// `ply` must be mutable since a consistency check is performed.
    /// If problems can be corrected automatically, `ply` will be modified accordingly.
    ///
    /// Returns number of bytes written.
    pub fn write_ply<T: Write>(&self, out: &mut T, ply: &mut Ply<E>) -> Result<usize> {
        match ply.make_consistent() {
            Ok(()) => (),
            Err(e) => return Err(io::Error::new(ErrorKind::InvalidInput, format!("The given ply isn't consistent: {:?}", e))),
        };
        self.write_ply_unchecked(out, ply)
    }
    /// Writes an entire PLY file modeled by `ply` to `out`, performes no consistency check.
    ///
    /// Like `write_ply` but doesn't check the input for inconsistency.
    /// The user is responsible to provide a consistent `Ply`,
    /// if not, behaviour is undefined and might result
    /// in a corrupted output.
    pub fn write_ply_unchecked<T: Write>(&self, out: &mut T, ply: &Ply<E>) -> Result<usize> {
        let mut written = 0;
        written += try!(self.write_header(out, &ply.header));
        written += try!(self.write_payload(out, &ply.payload, &ply.header));
        out.flush().unwrap();
        Ok(written)
    }
    fn write_new_line<T: Write>(&self, out: &mut T) -> Result<usize> {
        out.write(self.new_line.as_bytes())
    }
}

/*
use writer::Writer;
use std::io;
use std::io::{ Write, ErrorKind, Result };
use super::general;
use ply::PropertyAccess;
// */
use ply::{ Header, Encoding, Version, Comment, ObjInfo, ElementDef, PropertyDef, PropertyType, ScalarType };

// ////////////////////////
/// # Header
// ////////////////////////
impl<E: PropertyAccess> Writer<E> {
    /// Writes the magic number "ply" and a new line.
    ///
    /// Each PLY file must start with "ply\n".
    pub fn write_line_magic_number<T: Write>(&self, out: &mut T) -> Result<usize> {
        let mut written = 0;
        written += try!(out.write("ply".as_bytes()));
        written += try!(self.write_new_line(out));
        Ok(written)
    }
    /// Writes "format <encoding> <version>".
    ///
    /// Each PLY file must define its format.
    pub fn write_line_format<T: Write>(&self, out: &mut T, encoding: &Encoding, version: &Version) -> Result<usize> {
        let mut written = 0;
        written += try!(out.write("format ".as_bytes()));
        written += try!(self.write_encoding(out, encoding));
        written += try!(out.write(format!(" {}.{}", version.major, version.minor).as_bytes()));
        written += try!(self.write_new_line(out));
        Ok(written)
    }
    /// Writes a comment line.
    ///
    /// A comment must not contain a line break and only consist of ascii characters.
    pub fn write_line_comment<T: Write>(&self, out: &mut T, comment: &Comment) -> Result<usize> {
        let mut written = 0;
        written += try!(out.write(format!("comment {}", comment).as_bytes()));
        written += try!(self.write_new_line(out));
        Ok(written)
    }
    /// Writes an object information line.
    ///
    /// An object informatio line must not contain a line break an only consist of ascii characters.
    pub fn write_line_obj_info<T: Write>(&self, out: &mut T, obj_info: &ObjInfo) -> Result<usize> {
        let mut written = 0;
        written += try!(out.write(format!("obj_info {}", obj_info).as_bytes()));
        written += try!(self.write_new_line(out));
        Ok(written)
    }
    /// Writes an element line from the header: "element <name> <count>"
    ///
    /// This line is part of the header. It defines the format of an element.
    /// It is directly followed by its property definitions.
    ///
    /// Make sure the header is consistent with the payload.
    pub fn write_line_element_definition<T: Write>(&self, out: &mut T, element: &ElementDef) -> Result<usize> {
        let mut written = 0;
        written += try!(out.write(format!("element {} {}", element.name, element.count).as_bytes()));
        written += try!(self.write_new_line(out));
        Ok(written)
    }
    /// Writes a property line form the header: "property [list <index_type> <scalar_type> | <scalar_type> ]"
    ///
    /// Make sure the property definition is consistent with the payload.
    pub fn write_line_property_definition<T: Write>(&self, out: &mut T, property: &PropertyDef) -> Result<usize> {
        let mut written = 0;
        written += try!(out.write("property ".as_bytes()));
        written += try!(self.write_property_type(out, &property.data_type));
        written += try!(out.write(" ".as_bytes()));
        written += try!(out.write(property.name.as_bytes()));
        written += try!(self.write_new_line(out));
        Ok(written)
    }
    /// Writes the element line and all the property definitions
    ///
    /// Convenience method to call `write_line_element_definition` and `write_line_property_definition` in the correct way.
    ///
    /// Make sure the element definition is consistent with the payload.
    pub fn write_element_definition<T: Write>(&self, out: &mut T, element: &ElementDef) -> Result<usize> {
        let mut written = 0;
        written += try!(self.write_line_element_definition(out, &element));
        for (_, p) in &element.properties {
            written += try!(self.write_line_property_definition(out, &p));
        }
        Ok(written)
    }
    /// Writes `end_header\n`. This terminates the header. Each following byte belongs to the payload.
    pub fn write_line_end_header<T: Write>(&self, out: &mut T) -> Result<usize> {
        let mut written = 0;
        written += try!(out.write("end_header".as_bytes()));
        written += try!(self.write_new_line(out));
        Ok(written)
    }
    /// Convenience method to write all header elements.
    ///
    /// It starts with writing the magic number "ply\n" and ends with "end_header".
    ///
    /// Make sure the header is consistent with the payload.
    pub fn write_header<T: Write>(&self, out: &mut T, header: &Header) -> Result<usize> {
        let mut written = 0;
        written += try!(self.write_line_magic_number(out));
        written += try!(self.write_line_format(out, &header.encoding, &header.version));
        for c in &header.comments {
            written += try!(self.write_line_comment(out, c));
        }
        for oi in &header.obj_infos {
            written += try!(self.write_line_obj_info(out, oi));
        }
        for (_, e) in &header.elements {
            written += try!(self.write_element_definition(out, &e));
        }
        written += try!(self.write_line_end_header(out));
        Ok(written)
    }
    fn write_encoding<T: Write>(&self, out: &mut T, encoding: &Encoding) -> Result<usize> {
        let s = match *encoding {
            Encoding::Ascii => "ascii",
            Encoding::BinaryBigEndian => "binary_big_endian",
            Encoding::BinaryLittleEndian => "binary_little_endian",
        };
        out.write(s.as_bytes())
    }
    fn write_property_type<T: Write>(&self, out: &mut T, data_type: &PropertyType) -> Result<usize> {
        match *data_type {
            PropertyType::Scalar(ref scalar_type) => self.write_scalar_type(out, &scalar_type),
            PropertyType::List(ref index_type, ref content_type) => {
                let mut written = try!(out.write("list ".as_bytes()));
                match *index_type {
                    ScalarType::Float => return Err(io::Error::new(ErrorKind::InvalidInput, "List index can not be of type float.")),
                    ScalarType::Double => return Err(io::Error::new(ErrorKind::InvalidInput, "List index can not be of type double.")),
                    _ => (),
                };
                written += try!(self.write_scalar_type(out, &index_type));
                written += try!(out.write(" ".as_bytes()));
                written += try!(self.write_scalar_type(out, &content_type));
                Ok(written)
            }
        }
    }
    fn write_scalar_type<T: Write>(&self, out: &mut T, scalar_type: &ScalarType) -> Result<usize> {
        match *scalar_type {
            ScalarType::Char => out.write("char".as_bytes()),
            ScalarType::UChar => out.write("uchar".as_bytes()),
            ScalarType::Short => out.write("short".as_bytes()),
            ScalarType::UShort => out.write("ushort".as_bytes()),
            ScalarType::Int => out.write("int".as_bytes()),
            ScalarType::UInt => out.write("uint".as_bytes()),
            ScalarType::Float => out.write("float".as_bytes()),
            ScalarType::Double => out.write("double".as_bytes()),
        }
    }
}
/*
use writer::Writer;
use std::io::{ Write, Result };
use ply::{ Header, PropertyAccess, Encoding, ElementDef };
// */
use ply::Payload;

// ////////////////////////
/// # Payload
// ////////////////////////
impl<E: PropertyAccess> Writer<E> {
    /// Writes the payload of a `ply` (`ply.playload`).
    ///
    /// Make sure the Header is consistent with the payload.
    pub fn write_payload<T: Write>(&self, out: &mut T, payload: &Payload<E>, header: &Header) -> Result<usize> {
        let mut written = 0;
        let element_defs = &header.elements;
        for (k, element_list) in payload {
            let element_def = &element_defs[k];
            written += try!(self.write_payload_of_element(out, element_list, element_def, header));
        }
        Ok(written)
    }
    /// Write all elments as stored in the `element_list`.
    ///
    /// Make sure the header and the element definition is consistent with the payload.
    pub fn write_payload_of_element<T: Write>(&self, out: &mut T, element_list: &Vec<E>, element_def: &ElementDef, header: &Header) -> Result<usize> {
        let mut written = 0;
        match header.encoding {
            Encoding::Ascii => for element in element_list {
                written += try!(self.write_ascii_element(out, element, &element_def));
            },
            Encoding::BinaryBigEndian => for element in element_list {
                written += try!(self.write_big_endian_element(out, element, &element_def));
            },
            Encoding::BinaryLittleEndian => for element in element_list {
                written += try!(self.write_little_endian_element(out, element, &element_def));
            }
        }
        Ok(written)
    }
}
/*
use std::io::{ Write, Result, ErrorKind };
use ply::{ PropertyAccess, ElementDef, PropertyDef, PropertyType, ScalarType };
use super::Writer;
// */
use std::fmt::Display;

macro_rules! get_prop(
    ($e:expr) => (match $e {None => return Err(io::Error::new(ErrorKind::InvalidInput, "No property available for given key.")), Some(x) => x})
);

/// # Ascii
impl<E: PropertyAccess> Writer<E> {

    /// Write a single ascii formatted element.
    pub fn write_ascii_element<T: Write>(&self, out: &mut T, element: &E, element_def: &ElementDef) -> Result<usize> {
        let mut written = 0;
        let mut p_iter = element_def.properties.iter();
        let (_k, prop_type) = p_iter.next().unwrap();
        written += try!(self.write_ascii_property(out, element, &prop_type));
        loop {
            written += try!(out.write(" ".as_bytes()));
            let n = p_iter.next();
            if n == None {
                break;
            }
            let (_name, prop_type) = n.unwrap();
            written += try!(self.write_ascii_property(out, element, prop_type));
        }
        written += try!(self.write_new_line(out));
        Ok(written)
    }
    fn write_ascii_property<T: Write>(&self, out: &mut T, element: &E, prop_type: &PropertyDef) -> Result<usize> {
        let k = &prop_type.name;
        let result = match prop_type.data_type {
            PropertyType::Scalar(ref scalar_type) => match *scalar_type {
                ScalarType::Char => self.write_ascii_scalar(out, get_prop!(element.get_char(k))),
                ScalarType::UChar => self.write_ascii_scalar(out, get_prop!(element.get_uchar(k))),
                ScalarType::Short => self.write_ascii_scalar(out, get_prop!(element.get_short(k))),
                ScalarType::UShort => self.write_ascii_scalar(out, get_prop!(element.get_ushort(k))),
                ScalarType::Int => self.write_ascii_scalar(out, get_prop!(element.get_int(k))),
                ScalarType::UInt => self.write_ascii_scalar(out, get_prop!(element.get_uint(k))),
                ScalarType::Float => self.write_ascii_scalar(out, get_prop!(element.get_float(k))),
                ScalarType::Double => self.write_ascii_scalar(out, get_prop!(element.get_double(k))),
            },
            PropertyType::List(_, ref scalar_type) => match *scalar_type {
                ScalarType::Char => self.write_ascii_list(get_prop!(element.get_list_char(k)), out),
                ScalarType::UChar => self.write_ascii_list(get_prop!(element.get_list_uchar(k)), out),
                ScalarType::Short => self.write_ascii_list(get_prop!(element.get_list_short(k)), out),
                ScalarType::UShort => self.write_ascii_list(get_prop!(element.get_list_ushort(k)), out),
                ScalarType::Int => self.write_ascii_list(get_prop!(element.get_list_int(k)), out),
                ScalarType::UInt => self.write_ascii_list(get_prop!(element.get_list_uint(k)), out),
                ScalarType::Float => self.write_ascii_list(get_prop!(element.get_list_float(k)), out),
                ScalarType::Double => self.write_ascii_list(get_prop!(element.get_list_double(k)), out),
            }
        };
        result
    }
    fn write_ascii_scalar<T: Write, V: ToString>(&self, out: &mut T, value: V) -> Result<usize> {
        out.write(value.to_string().as_bytes())
    }
    fn write_ascii_list<T: Write, D: Clone + Display>(&self, list: &[D], out: &mut T) -> Result<usize> {
        let mut written = 0;
        written += try!(out.write(&list.len().to_string().as_bytes()));
        let b = " ".as_bytes();;
        for v in list {
            written += try!(out.write(b));
            written += try!(out.write(v.to_string().as_bytes()));
        }
        Ok(written)
    }
}
/*
use ply::{ PropertyAccess, ElementDef, PropertyType, ScalarType };
use super::Writer;

use std::io;
use std::io::{ Write, Result, ErrorKind };
// */
use byteorder::{ BigEndian, LittleEndian, WriteBytesExt, ByteOrder };

/*
macro_rules! get_prop(
    ($e:expr) => (match $e {None => return Err(io::Error::new(ErrorKind::InvalidInput, "No property available for given key.")), Some(x) => x})
);
// */

/// # Binary
impl<E: PropertyAccess> Writer<E> {
    // private payload
    /// Write a single binary formatted element in big endian.
    pub fn write_big_endian_element<T: Write> (&self, out: &mut T, element: &E, element_def: &ElementDef) -> Result<usize> {
        self.__write_binary_element::<T, BigEndian>(out, element, element_def)
    }
    /// Write a single binary formatted element in little endian.
    pub fn write_little_endian_element<T: Write> (&self, out: &mut T, element: &E, element_def: &ElementDef) -> Result<usize> {
        self.__write_binary_element::<T, LittleEndian>(out, element, element_def)
    }
    fn __write_binary_element<T: Write, B: ByteOrder>(&self, out: &mut T, element: &E, element_def: &ElementDef) -> Result<usize> {
        let mut written = 0;
        for (k, property_def) in &element_def.properties {
            match property_def.data_type {
                PropertyType::Scalar(ref scalar_type) => {
                    written += match *scalar_type {
                        ScalarType::Char => {try!(out.write_i8(get_prop!(element.get_char(k)))); 1},
                        ScalarType::UChar => {try!(out.write_u8(get_prop!(element.get_uchar(k)))); 1},
                        ScalarType::Short => {try!(out.write_i16::<B>(get_prop!(element.get_short(k)))); 2},
                        ScalarType::UShort => {try!(out.write_u16::<B>(get_prop!(element.get_ushort(k)))); 2},
                        ScalarType::Int => {try!(out.write_i32::<B>(get_prop!(element.get_int(k)))); 4},
                        ScalarType::UInt => {try!(out.write_u32::<B>(get_prop!(element.get_uint(k)))); 4},
                        ScalarType::Float => {try!(out.write_f32::<B>(get_prop!(element.get_float(k)))); 4},
                        ScalarType::Double => {try!(out.write_f64::<B>(get_prop!(element.get_double(k)))); 8},
                    };
                },
                PropertyType::List(ref index_type, ref scalar_type) => {
                    let vec_len = element_def.count;
                    written += match *index_type {
                        ScalarType::Char => {try!(out.write_i8(vec_len as i8)); 1},
                        ScalarType::UChar => {try!(out.write_u8(vec_len as u8)); 1},
                        ScalarType::Short => {try!(out.write_i16::<B>(vec_len as i16)); 2},
                        ScalarType::UShort => {try!(out.write_u16::<B>(vec_len as u16)); 2},
                        ScalarType::Int => {try!(out.write_i32::<B>(vec_len as i32)); 4},
                        ScalarType::UInt => {try!(out.write_u32::<B>(vec_len as u32)); 4},
                        ScalarType::Float => return Err(io::Error::new(ErrorKind::InvalidInput, "Index of list must be an integer type, float declared in PropertyType.")),
                        ScalarType::Double => return Err(io::Error::new(ErrorKind::InvalidInput, "Index of list must be an integer type, double declared in PropertyType.")),
                    };

                    written += match *scalar_type {
                        ScalarType::Char => try!(self.write_binary_list::<T, i8, B>(get_prop!(element.get_list_char(k)), out, &|o, x| {try!(o.write_i8(*x)); Ok(1)} )),
                        ScalarType::UChar => try!(self.write_binary_list::<T, u8, B>(get_prop!(element.get_list_uchar(k)), out, &|o, x| {try!(o.write_u8(*x)); Ok(1)} )),
                        ScalarType::Short => try!(self.write_binary_list::<T, i16, B>(get_prop!(element.get_list_short(k)), out, &|o, x| {try!(o.write_i16::<B>(*x)); Ok(2)} )),
                        ScalarType::UShort => try!(self.write_binary_list::<T, u16, B>(get_prop!(element.get_list_ushort(k)), out, &|o, x| {try!(o.write_u16::<B>(*x)); Ok(2)} )),
                        ScalarType::Int => try!(self.write_binary_list::<T, i32, B>(get_prop!(element.get_list_int(k)), out, &|o, x| {try!(o.write_i32::<B>(*x)); Ok(4)} )),
                        ScalarType::UInt => try!(self.write_binary_list::<T, u32, B>(get_prop!(element.get_list_uint(k)), out, &|o, x| {try!(o.write_u32::<B>(*x)); Ok(4)} )),
                        ScalarType::Float => try!(self.write_binary_list::<T, f32, B>(get_prop!(element.get_list_float(k)), out, &|o, x| {try!(o.write_f32::<B>(*x)); Ok(4)} )),
                        ScalarType::Double => try!(self.write_binary_list::<T, f64, B>(get_prop!(element.get_list_double(k)), out, &|o, x| {try!(o.write_f64::<B>(*x)); Ok(8)} )),
                    }
                }
            }
        };
        Ok(written)
    }
    fn write_binary_list<T: Write, D, B: ByteOrder>(&self, list: &[D], out: &mut T, out_val: &Fn(&mut T, &D) -> Result<usize>) -> Result<usize> {
        let mut written = 0;
        for v in list {
            written += try!(out_val(out, v));
        }
        Ok(written)
    }
}